3.97 \(\int \frac{\sqrt{d^2-e^2 x^2}}{x (d+e x)} \, dx\)

Optimal. Leaf size=46 \[ -\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )-\tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right ) \]

[Out]

-ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] - ArcTanh[Sqrt[d^2 - e^2*x^2]/d]

________________________________________________________________________________________

Rubi [A]  time = 0.059482, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {850, 844, 217, 203, 266, 63, 208} \[ -\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )-\tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d^2 - e^2*x^2]/(x*(d + e*x)),x]

[Out]

-ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] - ArcTanh[Sqrt[d^2 - e^2*x^2]/d]

Rule 850

Int[((x_)^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*x)/e)*(a + c*x
^2)^(p - 1), x] /; FreeQ[{a, c, d, e, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||
  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2]))

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{d^2-e^2 x^2}}{x (d+e x)} \, dx &=\int \frac{d-e x}{x \sqrt{d^2-e^2 x^2}} \, dx\\ &=d \int \frac{1}{x \sqrt{d^2-e^2 x^2}} \, dx-e \int \frac{1}{\sqrt{d^2-e^2 x^2}} \, dx\\ &=\frac{1}{2} d \operatorname{Subst}\left (\int \frac{1}{x \sqrt{d^2-e^2 x}} \, dx,x,x^2\right )-e \operatorname{Subst}\left (\int \frac{1}{1+e^2 x^2} \, dx,x,\frac{x}{\sqrt{d^2-e^2 x^2}}\right )\\ &=-\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )-\frac{d \operatorname{Subst}\left (\int \frac{1}{\frac{d^2}{e^2}-\frac{x^2}{e^2}} \, dx,x,\sqrt{d^2-e^2 x^2}\right )}{e^2}\\ &=-\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )-\tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{d}\right )\\ \end{align*}

Mathematica [A]  time = 0.0426394, size = 46, normalized size = 1. \[ -\log \left (\sqrt{d^2-e^2 x^2}+d\right )-\tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )+\log (x) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d^2 - e^2*x^2]/(x*(d + e*x)),x]

[Out]

-ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] + Log[x] - Log[d + Sqrt[d^2 - e^2*x^2]]

________________________________________________________________________________________

Maple [B]  time = 0.063, size = 137, normalized size = 3. \begin{align*}{\frac{1}{d}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{d\ln \left ({\frac{1}{x} \left ( 2\,{d}^{2}+2\,\sqrt{{d}^{2}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}} \right ) } \right ){\frac{1}{\sqrt{{d}^{2}}}}}-{\frac{1}{d}\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}-{e\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-e^2*x^2+d^2)^(1/2)/x/(e*x+d),x)

[Out]

(-e^2*x^2+d^2)^(1/2)/d-d/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)-1/d*(-(d/e+x)^2*e^2+2*d*
e*(d/e+x))^(1/2)-e/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.55558, size = 111, normalized size = 2.41 \begin{align*} 2 \, \arctan \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{e x}\right ) + \log \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

2*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + log(-(d - sqrt(-e^2*x^2 + d^2))/x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (- d + e x\right ) \left (d + e x\right )}}{x \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e**2*x**2+d**2)**(1/2)/x/(e*x+d),x)

[Out]

Integral(sqrt(-(-d + e*x)*(d + e*x))/(x*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.23569, size = 65, normalized size = 1.41 \begin{align*} -\arcsin \left (\frac{x e}{d}\right ) \mathrm{sgn}\left (d\right ) - \log \left (\frac{{\left | -2 \, d e - 2 \, \sqrt{-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \,{\left | x \right |}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^(1/2)/x/(e*x+d),x, algorithm="giac")

[Out]

-arcsin(x*e/d)*sgn(d) - log(1/2*abs(-2*d*e - 2*sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/abs(x))